Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Water Res ; 229: 119516, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2165950

ABSTRACT

Monitoring SARS-CoV-2 in wastewater is a valuable approach to track COVID-19 transmission. Designing wastewater surveillance (WWS) with representative sampling sites and quantifiable results requires knowledge of the sewerage system and virus fate and transport. We developed a multi-level WWS system to track COVID-19 in Atlanta using an adaptive nested sampling strategy. From March 2021 to April 2022, 868 wastewater samples were collected from influent lines to wastewater treatment facilities and upstream community manholes. Variations in SARS-CoV-2 concentrations in influent line samples preceded similar variations in numbers of reported COVID-19 cases in the corresponding catchment areas. Community sites under nested sampling represented mutually-exclusive catchment areas. Community sites with high SARS-CoV-2 detection rates in wastewater covered high COVID-19 incidence areas, and adaptive sampling enabled identification and tracing of COVID-19 hotspots. This study demonstrates how a well-designed WWS provides actionable information including early warning of surges in cases and identification of disease hotspots.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring , RNA, Viral
2.
Materials today. Proceedings ; 49:64-71, 2021.
Article in English | EuropePMC | ID: covidwho-1610250

ABSTRACT

At the end of 2019 in Wuhan China city, the outbreak of the virus called SARS-CoV 2 was originated, which later became a pandemic. In Ecuador, patient zero arrived on February 14, 2020 and the first mobility restriction imposed by the Government occurred on Tuesday, March 17 of the same year. Throughout the confinement, vehicle mobility restrictions have been modified by government entities depending on the number of infected people. This article presents an air quality study in the historic center of Cuenca city as consequence of mobility changes caused by Covid-19, where a comparison of concentration levels of polluting gases of the first semester of 2018, 2019 and 2020 is made, that allow differentiating and identifying the influence of vehicular flow on air quality. It can also be verified how the decrease in vehicle mobility restrictions influenced the increase in the rate of daily infections. For the study, air quality data published by the public mobility company of the city of Cuenca (EMOV EP) and the communications issued by the Emergency Operations Committee (COE), before and during the confinement, were collected. The acquisition, classification, analysis and interpretation of the data obtained through machine learning techniques was carried out. It can be concluded that while mobility restrictions were more severe, air quality improved and infections rate of decrease. Obtaining that polluting gases such as NO2 and CO produced by vehicular traffic show correlations of 61% and 60% respectively, which means that after 15 days of lifting the restrictive measures, the pollutants increased as well as the number of infected.

3.
CHEST ; 160(4):A1345-A1345, 2021.
Article in English | Academic Search Complete | ID: covidwho-1460860
4.
Lab Chip ; 21(15): 2913-2921, 2021 08 07.
Article in English | MEDLINE | ID: covidwho-1279909

ABSTRACT

Decades of research have shown that biosensors using photonic circuits fabricated using CMOS processes can be highly sensitive, selective, and quantitative. Unfortunately, the cost of these sensors combined with the complexity of sample handling systems has limited the use of such sensors in clinical diagnostics. We present a new "disposable photonics" sensor platform in which rice-sized (1 × 4 mm) silicon nitride ring resonator sensor chips are paired with plastic micropillar fluidic cards for sample handling and optical detection. We demonstrate the utility of the platform in the context of detecting human antibodies to SARS-CoV-2, both in convalescent COVID-19 patients and for subjects undergoing vaccination. Given its ability to provide quantitative data on human samples in a simple, low-cost single-use format, we anticipate that this platform will find broad utility in clinical diagnostics for a broad range of assays.


Subject(s)
COVID-19 , Optics and Photonics , Biological Assay , COVID-19 Testing , Cost-Benefit Analysis , Humans , SARS-CoV-2
5.
Biosens Bioelectron ; 169: 112643, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-778506

ABSTRACT

Detection of antibodies to upper respiratory pathogens is critical to surveillance, assessment of the immune status of individuals, vaccine development, and basic biology. The urgent need for antibody detection tools has proven particularly acute in the COVID-19 era. We report a multiplex label-free antigen microarray on the Arrayed Imaging Reflectometry (AIR) platform for detection of antibodies to SARS-CoV-2, SARS-CoV-1, MERS, three circulating coronavirus strains (HKU1, 229E, OC43) and three strains of influenza. We find that the array is readily able to distinguish uninfected from convalescent COVID-19 subjects, and provides quantitative information about total Ig, as well as IgG- and IgM-specific responses.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/blood , Coronavirus/isolation & purification , Influenza A virus/isolation & purification , Influenza, Human/blood , Pneumonia, Viral/blood , Betacoronavirus/isolation & purification , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Equipment Design , HEK293 Cells , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Protein Array Analysis/instrumentation , Protein Array Analysis/methods , Severe acute respiratory syndrome-related coronavirus/isolation & purification , SARS-CoV-2 , Sensitivity and Specificity
6.
Proc Natl Acad Sci U S A ; 117(36): 22430-22435, 2020 09 08.
Article in English | MEDLINE | ID: covidwho-724876

ABSTRACT

It is imperative to advance our understanding of heterogeneities in the transmission of SARS-CoV-2 such as age-specific infectiousness and superspreading. To this end, it is important to exploit multiple data streams that are becoming abundantly available during the pandemic. In this paper, we formulate an individual-level spatiotemporal mechanistic framework to integrate individual surveillance data with geolocation data and aggregate mobility data, enabling a more granular understanding of the transmission dynamics of SARS-CoV-2. We analyze reported cases, between March and early May 2020, in five (urban and rural) counties in the state of Georgia. First, our results show that the reproductive number reduced to below one in about 2 wk after the shelter-in-place order. Superspreading appears to be widespread across space and time, and it may have a particularly important role in driving the outbreak in rural areas and an increasing importance toward later stages of outbreaks in both urban and rural settings. Overall, about 2% of cases were directly responsible for 20% of all infections. We estimate that the infected nonelderly cases (<60 y) may be 2.78 [2.10, 4.22] times more infectious than the elderly, and the former tend to be the main driver of superspreading. Our results improve our understanding of the natural history and transmission dynamics of SARS-CoV-2. More importantly, we reveal the roles of age-specific infectiousness and characterize systematic variations and associated risk factors of superspreading. These have important implications for the planning of relaxing social distancing and, more generally, designing optimal control measures.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Transmission, Infectious/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Basic Reproduction Number , Betacoronavirus , COVID-19 , Contact Tracing , Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , Georgia/epidemiology , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL